
Network

Network ii

COLLABORATORS

TITLE :

Network

ACTION NAME DATE SIGNATURE

WRITTEN BY August 26, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Network iii

Contents

1 Network 1

1.1 Audio . 1

1.2 background . 1

1.3 closenetworkconnexion . 3

1.4 closenetworkserver . 3

1.5 createnetworkserver . 3

1.6 initnetwork . 4

1.7 networkclientid . 4

1.8 networkevent . 4

1.9 networkserverevent . 4

1.10 opennetworkconnexion . 5

1.11 recievenetworkdata . 5

1.12 recievenetworkfile . 5

1.13 recievenetworkstring . 6

1.14 sendnetworkdata . 6

1.15 sendnetworkfile . 6

1.16 sendnetworkstring . 7

Network 1 / 7

Chapter 1

Network

1.1 Audio

PureBasic - Network

Network are widely spreaded all over the world and allow computers
to communicate easely. PureBasic support the official Internet
protocol to exchange data: TCP/IP. This allow to write applications
or games using this protocol, using the well know ’client-server’
model. With these commands, it’s possible to create any kind of
internet like applications (browser, web server, ftp client...)
or fast multiplayers games. To use these commands, you need a
TCP/IP stack, like MIAMI or AmiTCP.

Primilary explanations

Commands summary:

CloseNetworkConnexion
CloseNetworkServer
CreateNetworkServer
InitNetwork
NetworkClientID
NetworkEvent
NetworkServerEvent
OpenNetworkConnexion
RecieveNetworkData
RecieveNetworkFile
RecieveNetworkString
SendNetworkData
SendNetworkFile
SendNetworkString

Network Client Demo
Network Server Demo

1.2 background

Network 2 / 7

General Informations:

This piece of text is a little try to explain the basis of the
client/server model and the TCP/IP protocol. This not means than
all informations provided are complete or 100% accurates.

TCP/IP:

This is a software only transfer protocol developed in the 70’s to
send and recieve data via from any location. The goal was to provide
a flexible way to send big files without lot of overhead. In few words,
the files are splitted down in many little parts (called ’packets’)
and send one by one. Once it’s on the network, the packets can take
any way to reach the destination, and it’s the software which
repack all the little part into one file. Each computer must have
an own IP Address which is composed of 4 numbers (each number can
take 0 to 255 value) and a subnet mask (4 numbers too). Ex:

Address IP : 192.0.3.25
Subnet mask: 255.255.0.0

An address IP must unique on the network, else there is a conflict (the
packets don’t know on which computer to go). On a local network (LAN:
Local Area Network) the subnet mask must be the same on all computers
else it will have some problem.

Special IPs:

127.0.0.1: Local IP. Each computer has this IP which represents himself.
(called ’Loopback’ too). This IP is very handy for programmers
(you can test the client/server programs without be connected
to any network)

255.255.255.255: never use this one has it’s reserved for Broadcast.

Client/Server:

This is a generic term which is widely used thanks to the internet. You guess
it, internet itself is a client/server like entity. Here is a little
graphic to show how it looks:

Computer1

\
\
\
\
\

Network 3 / 7

Server ------ Computer2

|
|
|

Computer2

Ok, so if the Computer1 want to send something to Computer2,
it must send the data to the server and the server will send
it to Computer2. The server is a bit like a dispatcher. It
took the data from a computer and send it to another (or
send to this computer the requester information). A server
can have any number of clients.

May be these little informations help you to build nice
and fast internet based applications with PureBasic !

See you,

AlphaSND.

1.3 closenetworkconnexion

SYNTAX
CloseNetworkConnexion()

STATEMENT
Close the current connexion and send to the server a notification.

1.4 closenetworkserver

SYNTAX
CloseNetworkServer()

STATEMENT
Shutdown the currently running server. All clients connected to this server
are automatically removed. The port is freed and can be reused by another
application.

1.5 createnetworkserver

SYNTAX
Result = CreateNetworkServer(Port)

FUNCTION

Network 4 / 7

Create a new network server on the local computer at the
specified port. Port values can goes from 6000 to 7000
(this is a recommended area space). Any number of servers
can run simultanely on the same computer but not with the
same port number. If the ’Result’ is NULL, the server can’t
be created (port in use), else the server has been correctly
created and ready to use.

Port: Port number for this server

1.6 initnetwork

SYNTAX
Result.l = InitNetwork()

FUNCTION
This is the initroutine that always must be called
before any other routines in Network library. This
functions try to open the ’bsdsocket.library’. If
the ’Result is NULL, there is no TCP/IP stack available
on the system, else all is correctly initialized.

1.7 networkclientid

SYNTAX
ClientID = NetworkClientID()

STATEMENT
This command is only need on the server side. It allows to know
which client has sent the data.

1.8 networkevent

SYNTAX
Result = NetworkEvent()

STATEMENT
Not NULL if an information has been recieved via the
Network and need to be processed. After a NetworkEvent(),
you can tipically use commands like: ReceiveNetworkString(),
ReceiveNetworkData(), etc..

1.9 networkserverevent

Network 5 / 7

SYNTAX
EventInfo = NetworkServerEvent()

STATEMENT
Return not NULL if an information has been recieved from any
clients actually connected to the server. To know which client
has sent something, just use the NetworkClientID() command.

The return ’EventInfo’ can take several values:

0: nothing has happened on the server.
2: a client has sent raw data
3: a client has sent a string (with SendNetworkString())
4: a client has quit the server
5: a client has sent a file (with SendNetworkFile())

1.10 opennetworkconnexion

SYNTAX
Result = OpenNetworkConnexion(ServerName$, Port)

STATEMENT
Try to open a connexion on the specified server. ’ServerName$’
can be an IP address or a full name ("ie: 127.0.0.1 or
ftp.home.net"). If the connexion has be granted by the server
the Result is not NULL, else the connexion has failed.

ServerName$: Name or IP address of the computer which hosts the
server to connect.

Port: Port number of the running server (see CreateNetworkServer).

1.11 recievenetworkdata

SYNTAX
ReceiveNetworkData(ClientID, *DataBuffer, Length)

STATEMENT
Recieve a raw data from the specified client. This command can be used
by both client and server applications. On server side, ’ClientID’
is the client which has send the String. On a client side,
just use ’0’ as ’ClientID’ to get the data which is actually
in the network queue.

The data is read into the specified *DataBuffer.

1.12 recievenetworkfile

Network 6 / 7

SYNTAX
RecieveNetworkFile(ClientID, FileName$)

STATEMENT
Recieve a file from the specified client. This command can be used
by both client and server applications. On server side, ’ClientID’
is the client which has send the String. On a client side,
just use ’0’ as ’ClientID’ to get the string which is actually
in the network queue.

The file must have been sent by using the specific SendNetworkFile()
command.

1.13 recievenetworkstring

SYNTAX
String$ = RecieveNetworkString(ClientID)

STATEMENT
Recieve a string from the specified client. This command can be used
by both client and server applications. On server side, ’ClientID’
is the client which has send the String. On a client side,
just use ’0’ as ’ClientID’ to get the string which is actually
in the network queue.

The string must have been sent by using the specific SendNetworkString()
command.

1.14 sendnetworkdata

SYNTAX
SendNetworkData(ClientID, *MemoryBuffer, Length)

STATEMENT
Send raw data to the specified client. This command can be used
by both client and server applications. On server side, ’ClientID’
is the client which should recieve this data. On a client side,
just use ’0’ as ’ClientID’ to send the data via the current connexion
(created with OpenNetworkConnexion()).

1.15 sendnetworkfile

SYNTAX
SendNetworkFile(ClientID, FileName$)

STATEMENT
Send a full file to the specified client. This command can be used
by both client and server applications. On server side, ’ClientID’
is the client which should recieve this data. On a client side,

Network 7 / 7

just use ’0’ as ’ClientID’ to send the data via the current connexion
(created with OpenNetworkConnexion()).

The file is send using very specific (and proof) methods. It must be
recieved with the RecieveNetworkFile() command.

This commands locks the program execution until the whole file
has been send.

1.16 sendnetworkstring

SYNTAX
SendNetworkFile(ClientID, String$)

STATEMENT
Send a string to the specified client. This command can be used
by both client and server applications. On server side, ’ClientID’
is the client which should recieve this data. On a client side,
just use ’0’ as ’ClientID’ to send the data via the current connexion
(created with OpenNetworkConnexion()).

The string is send using very specific (and proof) methods. It must be
recieved with the RecieveNetworkString() command.

	Network
	Audio
	background
	closenetworkconnexion
	closenetworkserver
	createnetworkserver
	initnetwork
	networkclientid
	networkevent
	networkserverevent
	opennetworkconnexion
	recievenetworkdata
	recievenetworkfile
	recievenetworkstring
	sendnetworkdata
	sendnetworkfile
	sendnetworkstring

